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ESTIMATING THE NUMBER OF ASYMPTOTIC DEGREES OF 
FREEDOM FOR NONLINEAR DISSIPATIVE SYSTEMS 

BERNARDO COCKBURN, DON A. JONES, AND EDRISS S. TITI 

ABSTRACT. We show that the long-time behavior of the projection of the exact 
solutions to the Navier-Stokes equations and other dissipative evolution equa- 
tions on the finite-dimensional space of interpolant polynomials determines the 
long-time behavior of the solution itself provided that the spatial mesh is fine 
enough. We also provide an explicit estimate on the size of the mesh. More- 
over, we show that if the evolution equation has an inertial manifold, then 
the dynamics of the evolution equation is equivalent to the dynamics of the 
projection of the solutions on the finite-dimensional space spanned by the ap- 
proximating polynomials. Our results suggest that certain numerical schemes 
may capture the essential dynamics of the underlying evolution equation. 

1. INTRODUCTION 

Physical arguments indicate that the asymptotic behavior of the solutions of 
certain dissipative evolution equations can be described by only a finite number 
of degrees of freedom. Such equations include, but are not limited to, systems of 
reaction-diffusion equations as well as systems that arise in fluid mechanics. See 
for example [24], [26]. This assertion was first rigorously proven by [10], in the 
case of the two-dimensional Navier-Stokes equations (NSE). Specifically, they show 
that if the difference between the first N Fourier modes of any two solutions of 
the Navier-Stokes equations tends to zero, asymptotically in time as time goes to 
infinity, for N sufficiently large, then the difference between the two solutions tends 
to zero, in an appropriate norm, as time goes to infinity. An explicit estimate on 
N, in terms of the Reynolds number, was first given by Foias, Manley, Temam and 
Treve [8] and later improved by Jones and Titi [22]. 

After this rigorous pioneering work of Foias and Prodi [10] several authors proved 
similar results for other degrees of freedom than the components of the Fourier 
modes. Foias and Temam [14] used the values of the solutions at nodes in the spatial 
domain as degrees of freedom. The work [15] and later [21] used local averages of 
the solutions on finite volumes as the degrees of freedom. Explicit estimates for 
these kinds of degrees of freedom were presented in [22]. In this paper, we further 
extend the above results and show that for a large class of dissipative evolution 
equations, including the Navier-Stokes equations, there is a larger collection of 
determining sets of degrees of freedom (see Definition 1.1 below), than the ones 
mentioned above. The existence of such a collection was asserted in [13]. Part of 
the results of this paper have been announced in [3]. 
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Definition 1.1. Let {f }N 1 be a set of bounded linear functionals on the space 
of solutions for a given evolution dissipative PDE. Suppose that whenever 
limtO, i(u1(t) - u2(t))= 0, for 1 <i<N, we conclude that limt+,0 flu1(t)-u2(t)fl 

0, where ui and u2 are any two solutions. Then we say that { }N is a set of 
determining functionals. 

These determining functionals can be thought of as determining degrees of free- 
dom for the long-time dynamics of the PDE. 

In the case the underlying dissipative evolution equation possesses an inertial 
manifold we can extend and sharpen these results. In particular, following the 
work of Foias and Titi [15], we show that if a sufficiently large number N of degrees 
of freedom is taken, then one can parameterize the inertial manifold in terms of 
these functionals {f}[1i We add that, in this case, one can choose the number N 
to be comparable with the dimension of the inertial manifold. Moreover, in this 
case we show that if the degrees of freedom of any two solutions on the inertial 
manifold coincide at one instant, then the solutions agree for all nonnegative time. 

The paper is organized as follows. In Section 2, we state, discuss, and prove our 
results concerning determining degrees of freedom for the two-dimensional Navier- 
Stokes equations on a square with periodic boundary conditions. We want to point 
out that the results of Theorem 2.1 and the techniques used to prove it also hold in 
the case of two-dimensional Navier-Stokes equations subject to the no-slip Dirichlet 
boundary condition. However, in this case one obtains larger upper bounds for the 
number of degrees of freedom. Whether this is a mathematical technicality or is due 
to the effects of physical boundaries remains to be explored. In Section 3, we display 
and discuss our results about determining degrees of freedom for general nonlinear 
dissipative evolution equations that possess an inertial manifold. In particular, we 
show that the inertial manifold can be parameterized by these determining degrees 
of freedom. On the other hand as we will see in Section 2, for the case of the NSE, 
the notion of determining degrees of freedom is not restricted to equations that 
possess an inertial manifold (the existence of an inertial manifold for the NSE is 
still an open question). In Section 4 we conclude by discussing conditions on general 
dissipative evolution equations that guarantee the existence of a set of determining 
degrees of freedom for these equations. 

Our results suggest that the long-time behavior of the solutions may be cap- 
tured by the dynamics of the projections on these finite-dimensional approximating 
spaces. Indeed, in the case where an inertial manifold exists, one shows that the 
dynamics of the underlying equation is equivalent to the dynamics of the projec- 
tions (Section 3). The real question is: does the dynamics of the approximating 
discretization approximate that of the underlying equation? We do not attempt 
to answer this question here. However, our results suggest that the answer of this 
question might be affirmative. We refer the reader to [17], [5.5], [32], [33], [18], [19] 
and references therein. 

2. SETS OF DETERMINING DEGREES OF FREEDOM FOR THE 2D NSE 

2.1. Preliminaries and statement of main result. In this section we con- 
sider the problem of finding sets of determining degrees of freedom for the two- 
dimensional NSE for a viscous incompressible fluid on the square Q = (0, L) x (0, L) 
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with periodic boundary conditions: 

( a-vZUu+(u.V)u+Vp=f in R2X(0,X) 

(2.1) J V.u=O in R2 X (0, c) 

(2.1) U(X,X2,t) = (Xix2+ Lt) 
I U(XI,X2,t) =u (x +L,x2,t), 

where the volume force f = f (x, t) and the kinematic viscosity v > 0 are given. 
The velocity vector u = u(x, t) and the pressure p = p(x, t) are the unknowns. 

We can rewrite the above equations in terms of the velocity u only as follows. 
Using the standard notation (see, e.g., [4], [27], [30]), we set 

V = {u : R- R2, vector-valued trigonometric polynomials 

with period L, V * u = 0, and judx = 0, 

H =the closure of V in (L 2 (Q)) 2 

V the closure of V in (H'(Q))2, 

where H'(Q) (I = 1, 2, ... ) denote the usual L2-Sobolev spaces. The space H is 
a Hilbert space with inner product and norm 

(u v) = ju(x). v(x)dx, juj = (j u(X) 2dX) 

respectively, where u(x) . v(x) is the usual Euclidean scalar product. Thanks to the 
Poincare inequality, V is also a Hilbert space with the (L2 (Q))2 inner product and 
norm 

2 
_______9V 

2 j av 2 

((uJv))= E i&& dx, flvfl2= E X i dx, 

respectively. 
Let P denote the orthogonal projection in L2 (Q) x L2 (Q) onto H. We denote 

by A the Stokes operator 

Au = -PAu, 

(notice that in the periodic case Au = -Au) and the bilinear operator 

B(u, v) = P((u V)v) 

for all u, v c V and in this case B(u, v) E V', where V' denotes the dual space of 
V. We recall that the operator A is a self-adjoint positive definite operator with 
compact inverse. Thus there exists a complete orthonormal set wj of eigenfunctions 
of A such that Awj = Ajwj and 0 < A1 < A2 < .... Moreover, we have that 
A1 - 

(2L )2, and Aj =0 (j) for j -o. 
We may rewrite the 2D NSE as the evolution equation 

du 
+ vAu+ B(u,u) = f 

dt 

on the Hilbert space H. We assume that f = Pf and that f belongs L??((O, 0o); H), 
that is, 

sup If(t)I <' . 
t>0 
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This hypothesis allows us to introduce the so-called generalized Grashof number 
Gr; see [8], defined as follows: 

(2.2) Gr = A L2F 
Alv2 -4wr2v2' 

where 
F = limsup I f(t) 1. 

t->oo 

Note that if f is time independent, then Gr is the Grashof number G = L2 If I 

Next, we focus our attention on the type of degrees of freedom we want to 
consider. Since our goal is to compare the asymptotic behavior, as time t -, 00, 
of two solutions of the NSE equations (2.1) in terms of the long time behavior of 
their degrees of freedom, it is reasonable to consider degrees of freedom with which 
it is possible to reconstruct a good approximation of the original functions. More 
precisely, given an arbitrary set of bounded linear functionals (degrees of freedom) 
{ Li }ff, defined on D(A), we consider 'reconstruction' operators Rh of the form 

N 

(2.3) Rh(U) ZEi(u) Xi, 
i= 1 

where ji E (L2 (Q)) 2, such that 

(2.4) 1 u-Rh(u) I< cl h21 Au. 

Here h and N are not independent parameters. We use them interchangeably with 
the understanding that as h -O 0, N -? oc and conversely. Note that although 
we do not require the functions qOi to belong to the space H, we do require the 
operator Rfh to be a good approximation of the inclusion map from D(A) into 
(L2(Q))2. In fact, the only property of the operator Rh that is used in our analysis 
is the approximation inequality (2.4). This means that we should not talk about 
determining degrees of freedom but of determining operators (projections) Rfh; we 
kept the term degrees of freedom for historical reasons. These abstract assumptions 
on the operator Rh, (2.3), (2.4) have been inspired by our previous work on the 
determining modes, nodes, and volume elements, [22]. 

Typically, the operator Rfh is an interpolation operator or a projection operator. 
Classical examples are constructed as follows. Let Th be a triangulation, made 
of triangles, of the domain Q and let {x,}N 1 be the set of all the vertices of the 
triangles T E Th. Let Vh be the set of continuous functions with values in R2 

whose restrictions to each triangle T E Th is affine in each component. Then, 
take qOi to be the element of Vh such that qi (xi) = Gil. We can define Rfh as an 
interpolation operator if we take fi(u) = u(xi) (note that the degrees of freedom Li 
are well defined for functions u E D(A) since, by elliptic regularity and Sobolev's 
inequality respectively, D(A) C (H2(Q))2 C (C0(Q))2). As another example we 
can also define Rfh as the L2-projection of u into Vh, that is, Rh(u) is the only 
element in Vh such that 

(R h(u), Vh) = (U, Vh), VVh E Vh. 

Both of the operators Rh defined above satisfy (2.4) with h equal to the maximum of 
the diameters of the triangles T E Th. In general, if the space span{q i, 1 < i < N} 
includes Vh and if Rh(Vh) = Vh for every Vh E Vh, then the inequality (2.4) holds. 
See, for example, [2], [16] and [34]. 
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We are now ready to state the main result of this section. 

Theorem 2.1. Let u and v be the solutions of the following initial value problems 
for the 2D NSE, 

(2.5) dt + vAu + B(u, u) = f (t), u(O) uo, 

(2.6) dt + vAv + B(v, v) = g(t), v(O) vo, 

respectively, where f and g are such that 

If(t)-9(t)| I0 as t ->o. 

Suppose that (2.3), (2.4) hold and that 

lim ?i(u(t) - v(t)) = 0, 1 < i < N. 
t->oo 

Then the set of degrees of freedom {ej} T is determining for the NSE (2.1), that 
is, 

lim 11 UM)- V(t) 11 = 0, 
t +oo 

provided 

h < h ( = 2 C2cAGr)1/2 

Here c1 is the constant in the approximation inequality (2.4), and C2 is the constant 
of Agmon's inequality; 

(2.7) IIUIILco(Q) < C21UI 2 lAu2, Vu E D(A). 

(The constant c2 may be bounded by (10 + 4V2)/wr in the case of peroidic boundary 
conditions.) 

Corollary 2.2. Suppose that N = C3 L2h-2. Then the set of degrees of freedom 
fi I - is determining for the NSE (2.1) provided 

N>74wr2 2 Cc1c3Gr. 

We recall that the best known upper bound for the fractal dimension of the 
attractor given in [6] is of the order G2/3(i + log(G))1/3. This estimate agrees 
up to the logarithmic term with the number of degrees of freedom predicted by 
physical arguments, and a rigorous lower bound for the Hausdorff dimension of the 
attractor derived by [1] for this case (see also [28]). The estimate in the corollary 
is consistent with the bound we derived for the upper bound for the number of 
determining nodes, determining finite volume elements, and determining modes 
which are all of the order Gr, [22]. Alternatively, as discussed in [6] one can deduce 
that the Kraichnan dissipative micro scale of the enstrophy, [24], is of the order 
LG- 1/3. Whereas Theorem 2.1 indicates that for this kind of explicit degrees of 
freedom the size of mesh (of this micro scale) should of the order h < CL Gr-1/2. 
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2.2. Proof of Theorem 2.1. In this section, we prove Theorem 2.1. We start 
with several auxiliary lemmas. 

Lemma 2.3. (Properties of B.) We have 

(2.8) J(B(u,v),w)J < fluJJ00 flivl JwJ, Vu E D(A),v,w E V, 

(2.9) (B(w, w), Aw) = O. Vw E D(A), 

(2.10) 
(B(u, w), Aw) + (B(w, u), Aw) + (B(w, w), Au) = 0, Vu, w E D(A). 

Proof. The first inequality follows immediately from the definition of B (for the 
proof see for example [4] or [30]). The second equality follows from a straightforward 
computation using the fact that we are considering the NSE in the two-dimensional 
space with periodic boundary conditions. The property (2.9) is not known to hold 
for the general no-slip boundary conditions. The last equality, (2.10), follows by 
taking the Frechet derivative of the second inequality, (2.9), in the direction of 
u. Again this a property of the two-dimensional NSE with periodic boundary 
conditions; see [4]. 0 

Lemma 2.4. For every w E D(A) we have 

(2.11) JwJ < JRhw? + c1h2JAwJ, 
(2.12) -wl2 < c4h2JRhwl2 + c5h2 Awl2, 

(2.13) wflW,2 = sup Iw(x)12 < c2 c4h-2lRhw2 + C2 c5h20AwI2, 
xEQ 

where C4 = 1/(2c'), C5 = (1 + c'/2) cl, and c' is an arbitrary positive number. 

Proof. The first inequality follows directly from inequality (2.4). The second in- 
equality follows from the interpolation inequality flwl12 < JwJ JAwJ and from a sim- 
ple use of Young's inequality. The third inequality follows in a similar way from 
Agmon's inequality (2.7), namely, flwfl2 < C21WI JAwl. D 

Lemma 2.5. For T = (vAi)1, we have 

1 t+T F2 
(2.14) limsup T J Auj2dT < 2 -2. 

For a proof, see [8]; see also [20]. 
The following version of Gronwall's Lemma, obtained by [21], is a generalization 

of an earlier result by Foias et al. [8]. 

Lemma 2.6. Let a be a locally integrable real valued function on (0, oo), satisfying 
for some 0 < T < oo the following conditions: 

1 ot+T 1 ot+T 

liminf - a a(r)dTr = -y > 0, limsup - a c-(r)dr = F < ox, 
t-oo T it to T it 

where a- = max{ -a, 0}. Further, let 3 be a real valued locally integrable function 
defined on (0, o.) such that 

1 rt+T 
lim T f 3+(Tr)dTr = 0, 

t-+00 T 
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where 0+ = max{13, 0}. Suppose that ( is an absolutely continuous non-negative 
function on (0, oc) such that 

dj(+ca?<13, a.e. on (0,oc). 

Then (t)-+0 as t -+ oo. 

We are now ready to prove Theorem 2.1. 
Set w(t) = u(t) - v(t). Subtracting equations (2.6) and (2.5), we find that 

(2.15) dt + vAw + B(u, w) + B(w, u) -B(w, w) = 0 . 

Upon using (2.9) and (2.10) we obtain that 

I 
dt JwJ2 + v)Aw12 < ? (B(w, w), Au) + If - gflAwJ. 2 at 

Using (2.8) and the above we obtain 

I d! 
JwJ2 + v(Aw12 < fjw((., lJwJJ JAuJ + If - gJ AwJ. 

Let e > 0. Then using Young's inequality and (2.12), we have that 

))w))oo))w)))Au) ? < WI12 + 1 
2eWI12 12 

< 
c2 

{C4h-2 RhWI2 + C5hl2Aw121 + 2l I)W121Au 
12 

2 ~ 5~~;+2 

With e = V C/(C2 C5 h2) we find that 

Ilwq,,I lq,,IAqI <=vcC4 RhwI2 + vc 2 c2 C5h2 IIWI12 12 JRcc4 ~ w + J AW 
- 2c5h4 2 2v c w)Au2 

Similarly, by using Young's inequality, we get 

if-gglAw < -If ?912 + 2f+ Aw12 

= 1 
)f-912 + v 2, 

for e' = 1/(vc'). 
Using the two last inequalities, we obtain, after reordering terms, 

< -)Aw (2v (2-c-c') + s Au)2 ))w))2 

v/C c4 h 12 1f_ 1 + 5h4 fR w) + 1V f-g2 

Finally, assuming that 
2-c - c' > 0, 

and using (2.12) in the following form, 

12 1 2IWI2_ C4 _ h2 wAw) e- h C~~h2 c5h4JRw 
we get 
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where 
2 -c' -c c2 C5 h2A 12 a~) 

c5h2 v c 
u 

and 

) v (2-c ) C4 IRhwi2 + I, If(t) -g(t)12. 

By using the hypotheses on the asymptotic behavior of i Rh(w) (t) i and i f (t) - 

g(t) I as t goes to infinity, we easily obtain that 

I rt+T 

lim- / 3 +()d-r = 0. tabo T J 

By Lemma 2.5, and since we are assuming that 2 - c - c' > 0, we get that 

1 ft+T C2 c5h2 1 t+T 12 lim sup - a,-c-r) d-r < lim sup - IAu (T)t dT 
to0 T t V C t-+oo T 

2C2 c5 h2 F2 
<K < 00. 

I/ c 
Finally, by using Lemma 2.5 once again, we get that 

1 ft+T 2 - c' - c 2C2 c5h 2 F2 
timijjj) T ~ uI? c5h2 v3c >0 

provided 

h-2 > 2 C25 F 

v2V(2-c'-c) c 

Taking the value of c that minimizes the right-hand side, namely, c = 1 - c'/2, and 
taking into account the definition of ho and the fact that C5 = (1 + c'/2) c1, we get 

h-2 > I + c'/2 h-2 
1- Ic'/2 0 

which is always satisfied for some positive c' if h < ho. Now, a simple application 
of Lemma 2.6 allows us to conclude that limtcO 11 w(t) = 0. This completes the 
proof of Theorem 2.1. D 

Remark. The identities (2.9), (2.10) have simplified the terms in Equation (2.15). 
Since, as pointed out earlier, these identities do not hold in the case of no-slip 
boundary conditions, one would have to estimate more terms in Equation (2.15) for 
the no-slip boundary condition case. As a consequence the estimate for the number 
of degrees of freedom will be larger. This is the essential difference between the 
periodic and no-slip Dirichlet boundary conditions. 

3. VARIOUS PARAMETERIZATIONS OF INERTIAL MANIFOLDS 

3.1. Background on inertial manifolds. In this section, we consider sets of 
determining degrees of freedom for evolution equations on a separable Hilbert space 
H (with inner product (,.) and norm I ) of the form 

(3.1) du +Au+ R(u) = f 

that possess inertial manifolds. The space H need not be infinite dimensional; 
however, for almost all of the physically interesting evolution equations, H is infinite 
dimensional. The operator A is assumed to be a positive, self-adjoint operator with 
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compact inverse. The space H will have a basis of eigenfunctions of the operator 
A. Let us denote {wj }? the orthonormal basis for the space H of eigenfunctions. 
That is, Awj = Ajwj, where 0 < Al < A2 < < Aj < . By dissipative 
evolution equation we mean that the solutions of (3.1) eventually become bounded 
in D(A). That is, there exists a p > 0 such that for every u0 E H, there exists a 
time T(uo) such that 

(3.2) JAu(t)I < p for all t > T(uo), 

where u(t) is a solution of (3.1) with initial data u0. 
An inertial manifold for an evolution equation is a smooth finite-dimensional 

manifold (at least Lipschitz) that is positively invariant under the solution operator 
and exponentially attracts all solutions, [11]. Under certain general assumptions 
on the nonlinearity R(u) and the linear operator A one can guarantee the exis- 
tence of the inertial manifold for the abstract equation (3.1); see [12]. Examples of 
such equations include the Kuramoto-Sivashinsky equation, the complex Ginzburg- 
Landau equation, the Cahn-Hilliard equation and certain reaction-diffusion equa- 
tions; see, for example, [5], [9], [11], [29], [31] and the references therein. To date 
the existence of an inertial manifold for the two-dimensional NSE is unknown. 

We assume in this section that (3.1) satisfies the general sufficient conditions 
mentioned in [12], and has an inertial manifold representable as the graph of a 
Lipschitz function 4 : PmH -> (I-Pm)D(A), where Pm is the orthogonal projection 
of H onto the span {w1,... WM}. 

More specifically, there exists a constant 1 such that 

(3.3) A (4(pi) - 4(Pi)) ?1 A(pi -P2)1 Vp1,P2 E PmH. 
Moreover, Foias, Sell and Titi [12] have shown that the inertial manifold enjoys the 
so called exponential tracking property (the asymptotic completeness property). 
Though the asymptotic completeness property is shown to hold in a weaker topology 
than the one we need here, one may use a stronger version of the strong squeezing 
property given in [23] and the same proof of the asymptotic completeness property 
given in [12] to obtain the following 

Proposition 3.1. For every solution u(t), of (3.1), there exists a time T*( u(0) ) > 
0 and a solution UM (t) on the inertial manifold such that 

(3.4) I A(u(t + T*) - um(t)) < C exp (- Am+, t) V t > 0, 

for some positive constant C which depends on Ju(0) and p. 

Once more, we associate to our set of degrees of freedom {4 }ti where ei are 
linear bounded functionals on D(A%), for some fixed -y E (0,1], the operator Rfh of 
the form 

N 

(3.5) Rh(u) = E Wj(u) sj, 
i= 1 

where now ?bi belongs to H. As in the preceding section, we restrict ourselves 
to those operators Rfh which are a good approximation of the inclusion map from 
D(A-Y) into H. More precisely, we require the following approximation inequality 
to hold: 

(3.6) u-Rhu ?c6h I Alu, VuE D(A%), 
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for some positive number 3, and positive constant c6. 
We are now ready to state the main result of this section, which generalizes the 

result of [15] for the determining nodes and volume elements. 

Theorem 3.2. Suppose that (3.1) has an inertial manifold M representable as 
the graph of a function 4$: PmH - (I - Pm)D(A) and that 4$ satisfies (3.3) and 
Proposition 3.1. Suppose that the approximation inequality (3.6) is satisfied and 
assume h is small enough such that 

(3.7) h < (c6(1 + I) A -l 

Then (i) The map Rh: M -* spanf{i,... , qN} is a Lipschitz homeomorphism 
between M and Rh(M). That is, there exist positive constants C7, C8 such that 

c7Ju1 -u21 < R h(u)-R h(U2)1 < C8|U1 -U21 for all U1,U2 E M. 

(ii) Let u(O), v(O) E MA, and assume that for some to > 0 we have 

R hu(to) = Rh V(to). 

Then 
u(t) = v(t) for all t > 0. 

(iii) The set of degrees of freedom {fi}N 1 is determining for (3.1). 

Property (i) in the above theorem states that the inertial manifold may be pa- 
rameterized in a smooth fashion (Lipschitz) in terms of the degrees of freedom, 
(3.5), provided we take sufficiently many degrees of freedom so that (3.7) is satis- 
fied. Property (ii) states that solutions on the inertial manifold have the property 
that if their interpolates or projections Rfh agree at a single instant, then the so- 
lutions are identical. Whether this property holds for dissipative PDEs that are 
not known to have an inertial manifold, such as the Navier-Stokes equations, re- 
mains an open question. The number of determining degrees of freedom as stated 
in property (iii) is proportional to the dimension of the inertial manifold and is a 
consequence of the proof of the above theorem. However, with a different approach 
that depends on the equation, one might be able to obtain a much smaller estimate 
on the number of determining degrees of freedom. As an example we mention the 
one-dimensional complex Ginzburg-Landau equation, which is shown to have two 
determining nodes, [25], and the Kuramoto-Sivashinsky equation, which has four 
determining nodes, [7]. Both equations have inertial manifolds with a dimension 
that can be made arbitrarily large by adjusting the physical parameters appropri- 
ately. 

The outline of the proof of the above theorem is in Section 3.3. 

3.2. An example. To illustrate the content of the previous section, we consider 
the Kuramoto-Sivashinsky equation 

aU +aU +2U ax 
-+X4 + WX -2 +Uo 0 

(3.8) u(O,x) = uo(x), 

u(t, x) = u(t, x + L) L > 0O t > 0O 

restricted to the invariant space of odd solutions. We take the Hilbert space H = 

{u E L2((0, L)) Ju(x) = u(x + L), u(x) = -u(L - x), x E R}. Here A = '94 with 
domain D(A) = H 4er((0, L)) n H, where Hpmr(0, L) denotes the Sobolev space of 
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functions that are periodic with period L along with their first m - 1 derivatives. 
The eigenvalues of A are Aj = (27rj/L)4 and eigenfunctions wj- sin(27rj/L). 

We construct the operator Rfh on D(A1/2), (i.e. ty = 1/2) as follows. First, we 
divide the domain (0, L] into M equal disjoint elements each of width h = L/M, 
and set x; = j h for 1 < j < M. Then we take Vh = span{q$, 1 < i < N - 2M} _ 
spanlij, 02,j, 1 < < ? M}, where the functions 51,? and O2,i are piecewise-cubic 

C1([0,L]) functions such that q1,,(xj) = 8ij, q2,i(X) = 0, and ax (xj) = 0, 
a 

q2,2, 
(xi) = 6ij. These functions are the so-called Hermite cubics. Now, we define ax 

Rh (u) to be the L2-projection of u into Vh. The operator Rh thus constructed does 
satisfy the approximation inequality (3.6) with:3 = 2, (see for example [34]). 

For the existence of an inertial manifold for the Kuramoto-Sivashinsky equation 
the reader is referred to [11], or any of the references mentioned in the beginning of 
Section 3.1. Note that Theorem 3.2 requires that M A7'/2 m. This is the same 
order as the dimension of the inertial manifold which of course has dimension m. 

3.3. Proof of Theorem 3.2. In this section we prove Theorem 3.2. To prove 
part (i) let u, u2 E M and w = ul-U2, P1 = PmUl1 P2 = PmU2. Using (3.3) and 
0 < y < 1, we have 

JA~wJ = JAI(pi- P2 + 4b (Pl) - 4D(P2))J 

K jA (pi- P2)1 + A77l-' A(,(pi)- q(P2))1 

K AI(pi- P2)l + Alj4I1l1A(pi- P2)l 

(3.9) < (1 + I)A7M+1lw. 

Using (3.6) and the above, we obtain 

wl < JRhwI + C6oh0JAywI 
< JR wh + c6 hO(I + l) A+iw_ . 

As a result we have 

(3.10) lu - v < L JRh(u -V), 

with L = (1 - c6h(1 + l)AM+1)1. 
Similarly, from (3.6) and (3.9) we have that 

JRhwl ?< wl + C6Vh lA-wl 

< {1+C60h (1 + I) AM+11 Iwl- 

This completes the proof of part (i). 
To prove (ii) let u(O) and v(0) belong to the manifold M. Since the inertial 

manifold is positively invariant, u(to) and v(to) also belong to M for all to > 0. By 
(3.10) we have that if RhhU(to) = RhV(to), then u(to) = v(to). Since the reduction 
of the equation (3.1) to the inertial manifold gives an ordinary differential equation 
with Lipschitz nonlinearity, by the uniqueness of solutions we get that u(t) v(t) 
for all t > 0. 

To prove (iii), that is, the set of degrees of freedom {1i}jYd is determining, 
let um and vM be the two solutions on the inertial manifold corresponding to 
the solutions u(t) and v(t) respectively, that satisfy (3.4). As we mentioned the 
solutions are eventually bounded in D(A) and in particular in D(AY). Set T* = 
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max{T*(Iu(O) ),T*(Iv(O) )}, where T*(Iu(O) )), T*(Iv(O)I) are given in (3.4). Then 
for t > T* we have that 

u(t) - v(t) < Rh(u(t) - v(t)) + I (I - Rh)(u(t) - v(t)) 
< |R'(u(t) - v(t))| 

+1 (I - Rh)(u(t) - uM(t - T*(Juol))) I 

+ (I - Rh) (v(t) - VM (t - T* (uo ))) I 
+1 (I - Rh)(UM(t - T*(Juo )) - VM(t - T* (VoD))) I 

By (3.6), (3.9), and (3.4) 

a(t) -v(t) |< R Rh t- v(t)) I + 2CC6 h,8A"Y1 exp (-A)m+, (lt- T*)) 

+ c6 h1 (1 + 1) A? +1 I uM(t - T*(uo)) - vM(t - T*(vo)) 

We estimate the quantity 8 = |UM(t - T* (Iuo v))-M (t - T* (Io)) by using 
(3.4), 

E) < | u(t)-v(t) |+ |u(t)-um(t-T*(Iuol)) |+ |v(t)-vm(t-T*(|vol))I| 

< |u(t)-v(t) + 20CA1 exp -2Am+i (t-T*) 

Since, by hypothesis, (3.7), L = (1 - c6h/3(l + l)Ay +1)-I is a positive number, we 
can easily combine the inequalities above to obtain 

u(t) -v(t)I < L Rh(u(t) -v(t)) 

+ 2Cc6LA 10hp [AX + (1 + l)A7i +1] exp (-2 Am+, (t - T*) 

Thus, if ?j(u(t) - v(t)), 1 < i < N, go to zero as t goes to infinity, then JRh(u(t)- 
v(t)) also goes to zero as t goes to infinity. This shows that the set of degrees of 
freedom {f }t-L is determining. This completes the proof of Theorem 3.2. 0 

4. DEGREES OF FREEDOM FOR GENERAL DISSIPATIVE EVOLUTION EQUATIONS 

In this section we give sufficient conditions so that the evolution equation on a 
separable Hilbert space H 

(4.1) du +Au+ R(u) = f 

has a finite set of determining degrees of freedom {ti }1Y4. The operator A is 
assumed to be a positive, self-adjoint operator with compact inverse. Hence, as 
before there exists a basis {wj }j?' 1 of eigenfunctions of A. That is Awj = Ajwj . We 
suppose that the degrees of freedom {ti}$f4 satisfy (3.5) and (3.6) of the previous 
section. 

We emphasize that we do not assume in this section that (4.1) has an iner- 
tial manifold. When an inertial manifold exists for an evolution equation one can 
deduce, as was done in the previous section, that there exists a finite set of deter- 
mining degrees of freedom. However, due to the nature of the proof that was given 
in Section 3.3, the number of degrees of freedom is of the order of the dimension of 
the inertial manifold. 

Given a specific equation alternate proofs may show that the number of degrees 
of freedom is much smaller than the bound derived in the previous section. Thus 
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the number of determining degrees of freedom need not be related to the dimension 
of the inertial manifold at all. See the discussion below Theorem 3.2. 

A dissipative evolution equation of the form (4.1) may still have a finite set of 
determining degrees of freedom-regardless of the existence of an inertial manifold. 
We demonstrate this below. In general the estimate we derive on h for the degrees 
of freedom to be determining may be improved for a given equation by taking 
advantage of the properties of the nonlinear term R(u) specific to that equation (as 
we did for the NSE in Section 2) as well as the regularity of the solutions as for 
the one-dimensional complex Ginzburg-Landau equation, [25], and the Kuramoto- 
Sivashinsky equation, [7]. Here we will not try to make our estimates as sharp as 
possible. 

We make two assumptions about (4.1). The first is that the system is dissipative 
in 1D(A) in the sense of (3.2). We denote by B(p) the set {u E D(A): lAul < p}. 
Second, we suppose the nonlinear term satisfies 

(4.2) 

j(R(u) -R(v),A(u-v))I < K(p)j(u- v)I" IA0'(u-v) 112, for all u,v E B(p), 

where 0 E [0,1] and where r1 > 0, r2 > 0 are real numbers and are such that 
r1 + r2 = 2. These two assumptions hold for a variety of dissipative evolution 
equations, including the ones mentioned at the beginning of Section 3 as well as for 
the NSE. 

Theorem 4.1. Suppose that {eI}N satisfies (3.5) and (3.6) in Section 3. Then 
under the above assumptions on (4.1), {t}$NLI is a set of determining degrees of 
freedom provided that h is sufficiently small so that 

(4-3) 1 - K(p)kiA'rl +r20-2 (c6 h)r1 > 0 

holds. The constant k1 satisfies (a + b)rl < ki (a" + brl) for all a, b E R+. That is, 
k,= 1 if r1 < 1, and k1 = 2r1-l if ri > 1. 

Proof. Suppose, without loss of generality, that u(t) and v(t) solve (4.1) and satisfy 
u(t), v(t) E B(p) for all t > 0. Set w(t) = u(t) - v(t). By assumption JRhw(t)I __ 0 

as t -* ox. Subtracting the equations governing u(t), v(t), taking the inner product 
with Aw and using (4.2), we find that 

+ dIwjj2 + jAwj2 < K(p)lwlrl jA'wjr2, 

where 11/11 = JA1/2. 1. FRom (3.6) and our assumptions on r1, r2, and the inequality 
jAXuj < A-1'-Au1 for all u E D(A) (-y is given in (3.6)), we have that 

2dIlwII2 + JAwl2 < K(p) (JRhwI + c6 hI I Alw I JA'wr2 

< K(p)pr2A(0-l)r2kl 
JRhwI1r 

+K(p)klA'rl +r2O-2(c6 h1)nl I Aw 12 

Using our assumption on h', (4.3), the inequality Aj2lwII < ?Awl and Gronwall's 
inequality, the result follows. C3 
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